MDM2-Dependent Rewiring of Metabolomic and Lipidomic Profiles in Dedifferentiated Liposarcoma Models

去分化脂肪肉瘤模型中 MDM2 依赖的代谢组学和脂质组学特征重塑

阅读:5
作者:Andrew Patt, Bryce Demoret, Colin Stets, Kate-Lynn Bill, Philip Smith, Anitha Vijay, Andrew Patterson, John Hays, Mindy Hoang, James L Chen, Ewy A Mathé

Abstract

Dedifferentiated liposarcoma (DDLPS) is an aggressive mesenchymal cancer marked by amplification of MDM2, an inhibitor of the tumor suppressor TP53. DDLPS patients with higher MDM2 amplification have lower chemotherapy sensitivity and worse outcome than patients with lower MDM2 amplification. We hypothesized that MDM2 amplification levels may be associated with changes in DDLPS metabolism. Six patient-derived DDLPS cell line models were subject to comprehensive metabolomic (Metabolon) and lipidomic (SCIEX 5600 TripleTOF-MS) profiling to assess associations with MDM2 amplification and their responses to metabolic perturbations. Comparing metabolomic profiles between MDM2 higher and lower amplification cells yielded a total of 17 differentially abundant metabolites across both panels (FDR < 0.05, log2 fold change < 0.75), including ceramides, glycosylated ceramides, and sphingomyelins. Disruption of lipid metabolism through statin administration resulted in a chemo-sensitive phenotype in MDM2 lower cell lines only, suggesting that lipid metabolism may be a large contributor to the more aggressive nature of MDM2 higher DDLPS tumors. This study is the first to provide comprehensive metabolomic and lipidomic characterization of DDLPS cell lines and provides evidence for MDM2-dependent differential molecular mechanisms that are critical factors in chemoresistance and could thus affect patient outcome.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。