Biocompatibility and Cytotoxicity of Pulp-Capping Materials on DPSCs, With Marker mRNA Expressions

牙髓盖髓材料对 DPSC 的生物相容性和细胞毒性以及标志物 mRNA 表达

阅读:7
作者:Banu Çiçek Tez, Bahar Başak Kızıltan Eliaçık, Pakize Neslihan Taşlı, Hazal Yılmaz, Fikrettin Şahin

Conclusions

NeoPUTTY MTA and Harvard BioCal-Cap showed suitable biocompatibility values; in particular, these pulp-capping materials were observed to support the angiogenic marker.

Methods

Impacted third molars were used to isolate the hDPSCs, which were treated with extract-release fluids of the pulp-capping materials (Harvard BioCal-Cap, NeoPUTTY MTA, TheraCal LC, and Dycal). Effects of the capping materials on cell viability were assessed using 3-(4,5-di-methyl-thiazol-2-yl)-5-(3-carboxy-methoxy-phenyl)-2-(4-sulfo-phenyl)-2H-tetrazolium (MTS) assay and the apoptotic/necrotic cell ratios and reactive oxygen species (ROS) levels from flow cytometry. Marker expressions (alkaline phosphatase [ALP], osteocalcin [OCN], collagen type I alpha 1 [Col1A], secreted protein acidic and rich in cysteine [SPARC], osteonectin [ON], and vascular endothelial growth factor [VEGF]) were determined by quantitative reverse-transcription polymerase chain reaction. Changes in surface morphology of the hDPSCs were visualised by SEM.

Results

The MTS assay results at days 1, 3, 5, and 7 indicated that Harvard BioCal-Cap, NeoPUTTY MTA, and TheraCal LC did not adversely affect cell viability when compared with the control group. According to the MTS assay results at day 14, no significant difference was found amongst Dycal, Harvard BioCal-Cap, NeoPUTTY MTA, and TheraCal LC affecting cell viability. Dycal was the only capping material that increased ROS level. High levels of VEGF expression were observed with Harvard BioCal-Cap, TheraCal LC, and NeoPUTTY MTA. NeoPUTTY MTA, and Dycal upregulated OCN expression, whereas TheraCal LC upregulated Col1A and SPARC expression. Only Dycal increased ALP expression. HDSCs were visualized in characteristic spindle morphology on SEM when treated with TheraCal LC and Harvard BioCal-Cap. Conclusions: NeoPUTTY MTA and Harvard BioCal-Cap showed suitable biocompatibility values; in particular, these pulp-capping materials were observed to support the angiogenic marker.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。