Human Umbilical Tissue-Derived Cells Secrete Soluble VEGFR1 and Inhibit Choroidal Neovascularization

人脐带组织来源的细胞分泌可溶性VEGFR1并抑制脉络膜新生血管

阅读:7
作者:Jing Cao, Rong Yang, Taylor E Smith, Stephanie Evans, Gary W McCollum, Steven C Pomerantz, Theodore Petley, Ian R Harris, John S Penn

Abstract

Exudative age-related macular degeneration (AMD), characterized by choroidal neovascularization (CNV), is the leading cause of irreversible blindness in developed countries. Anti-vascular endothelial growth factor (VEGF) drugs are the standard treatment for AMD, but they have limitations. Cell therapy is a promising approach for ocular diseases, and it is being developed in the clinic for the treatment of retinal degeneration, including AMD. We previously showed that subretinal injection of human umbilical tissue-derived cells (hUTCs) in a rodent model of retinal degeneration preserved photoreceptors and visual function through rescue of retinal pigment epithelial (RPE) cell phagocytosis. Here we investigated the effect of hUTCs on a rat model of laser-induced CNV and on a human RPE cell line, ARPE-19, for VEGF production. We demonstrate that subretinal injection of hUTCs significantly inhibited CNV and lowered choroidal VEGF in vivo. VEGF release from ARPE-19 decreased when co-cultured with hUTCs. Soluble VEGF receptor 1 (sVEGFR1) is identified as the only factor in hUTC conditioned medium (CM) that binds to VEGF. The level of exogenous recombinant VEGF in hUTC CM was dramatically reduced and could be recovered with sVEGFR1-neutralizing antibody. This suggests that hUTC inhibits angiogenesis through the secretion of sVEGFR1 and could serve as a novel treatment for angiogenic ocular diseases, including AMD.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。