Myocardial extracellular volume fraction quantification in an animal model of the doxorubicin-induced myocardial fibrosis: a synthetic hematocrit method using 3T cardiac magnetic resonance

阿霉素诱发的心肌纤维化动物模型中心肌细胞外体积分数的量化:采用 3T 心脏磁共振的合成血细胞比容法

阅读:5
作者:Zhen Zhou, Rui Wang, Hui Wang, Yi Liu, Dongxu Lu, Zhonghua Sun, Guang Yang, Lei Xu

Background

Visualization of diffuse myocardial fibrosis is challenging and mainly relies on histology. Cardiac magnetic resonance (CMR), which uses extracellular contrast agents, is a rapidly developing technique for measuring the extracellular volume (ECV). The

Conclusions

Our study showed promising results for using synthetic ECV compared with the conventional ECV for providing accurate quantification of myocardial ECV without the need for blood sampling.

Methods

This study was approved by the local animal care and ethics committee. Fifteen beagle models with diffuse myocardial fibrosis, including 12 experimental and three control subjects, were generated by injecting doxorubicin 30 mg/m2 intravenously every three weeks for 24 weeks. Short-axis (SAX) and 4-chamber long-axis (LAX) T1 maps were acquired for both groups. The association between hematocrit (Hct) and native T1blood was derived from 9 non-contrast CMR T1 maps of 3 control beagles using regression analysis. Synthetic ECV was then calculated using the synthetic Hct and compared with conventional ECV at baseline and the 16th and 24th week after doxorubicin administration. The collagen volume fraction (CVF) value was measured on digital biopsy samples. Bland-Altman plots were used to analyze the agreement between conventional and synthetic ECV. Correlation analyses were performed to explore the association among conventional ECV, synthetic ECV, CVF, and left ventricular ejection fraction (LVEF).

Results

The regression model synthetic Hct = 816.46*R1blood - 0.01 (R2=0.617; P=0.012) was used to predict the Hct from native T1blood values. The conventional and synthetic ECV fractions of experimental animals at the 16th and 24th week after modeling were significantly higher than those measured at the baseline (31.4%±2.2% and 36.3%±2.1% vs. 22.9%±1.7%; 29.9%±2.4% and 36.1%±2.6% vs. 22.0%±2.4%; all with P<0.05). Bland-Altman plots showed a bias (1.0%) between conventional and synthetic ECV with 95% limits of agreement of -2.5% to 4.4% in the per-subject analysis (n=21) and a bias (1.0%) between conventional and synthetic ECV with 95% limits of agreement of -2.4% to 4.3% in the per-segment analysis (n=294). Conventional and synthetic ECV were well correlated with CVF (r=0.937 and 0.925, all with P<0.001, n=10). Conclusions: Our study showed promising results for using synthetic ECV compared with the conventional ECV for providing accurate quantification of myocardial ECV without the need for blood sampling.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。