ALF: a strategy for identification of unauthorized GMOs in complex mixtures by a GW-NGS method and dedicated bioinformatics analysis

ALF:通过 GW-NGS 方法和专用生物信息学分析识别复杂混合物中未经授权的转基因生物的策略

阅读:5
作者:Alexandra Bogožalec Košir, Alfred J Arulandhu, Marleen M Voorhuijzen, Hongmei Xiao, Rico Hagelaar, Martijn Staats, Adalberto Costessi, Jana Žel, Esther J Kok, Jeroen P van Dijk

Abstract

The majority of feed products in industrialised countries contains materials derived from genetically modified organisms (GMOs). In parallel, the number of reports of unauthorised GMOs (UGMOs) is gradually increasing. There is a lack of specific detection methods for UGMOs, due to the absence of detailed sequence information and reference materials. In this research, an adapted genome walking approach was developed, called ALF: Amplification of Linearly-enriched Fragments. Coupling of ALF to NGS aims for simultaneous detection and identification of all GMOs, including UGMOs, in one sample, in a single analysis. The ALF approach was assessed on a mixture made of DNA extracts from four reference materials, in an uneven distribution, mimicking a real life situation. The complete insert and genomic flanking regions were known for three of the included GMO events, while for MON15985 only partial sequence information was available. Combined with a known organisation of elements, this GMO served as a model for a UGMO. We successfully identified sequences matching with this organisation of elements serving as proof of principle for ALF as new UGMO detection strategy. Additionally, this study provides a first outline of an automated, web-based analysis pipeline for identification of UGMOs containing known GM elements.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。