Biosynthesis of Lysosomally Escaped Apoptotic Bodies Inhibits Inflammasome Synthesis in Macrophages

溶酶体逃逸凋亡小体的生物合成抑制巨噬细胞中的炎症小体的合成

阅读:6
作者:Jiayi Mao, Wenzheng Xia, Yanglin Wu, Minxiong Li, Yun Zhao, Peisong Zhai, Yuguang Zhang, Tao Zan, Wenguo Cui, Xiaoming Sun

Abstract

Hyperglycemia and bacterial colonization in diabetic wounds aberrantly activate Nod-like receptor protein 3 (NLRP3) in macrophages, resulting in extensive inflammatory infiltration and impaired wound healing. Targeted suppression of the NLRP3 inflammasome shows promise in reducing macrophage inflammatory disruptions. However, challenges such as drug off-target effects and degradation via lysosomal capture remain during treatment. In this study, engineered apoptotic bodies (BHB-dABs) derived from adipose stem cells loaded with β-hydroxybutyric acid (BHB) were synthesized via biosynthesis. These vesicles target M1-type macrophages, which highly express the folic acid receptor in the inflammatory microenvironment, and facilitate lysosomal escape through 1,2-distearoyl-sn-propyltriyl-3-phosphatidylethanolamine-polyethylene glycol functionalization, which may enhance the efficacy of NLRP3 inhibition for managing diabetic wounds. In vitro studies demonstrated the biocompatibility of BHB-dABs, their selective targeting of M1-type macrophages, and their ability to release BHB within the inflammatory microenvironment via folic acid and folic acid receptor signaling. These nanovesicles exhibited lysosomal escape, anti-inflammatory, mitochondrial protection, and endothelial cell vascularization properties. In vivo experiments demonstrated that BHB-dABs enhance the recovery of diabetic wound inflammation and angiogenesis, accelerating wound healing. These functionalized apoptotic bodies efficiently deliver NLRP3 inflammasome inhibitors using a dual strategy of targeting macrophages and promoting lysosomal escape. This approach represents a novel therapeutic strategy for effectively treating chronic diabetic wounds.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。