Pro-angiogenic photo-crosslinked silk fibroin hydrogel: a potential candidate for repairing alveolar bone defects

促血管生成光交联丝素蛋白水凝胶:修复牙槽骨缺损的潜在候选材料

阅读:6
作者:Siyuan Wu, Xuezhong Zhou, Yilong Ai

Conclusion

This study found that photo-crosslinked silk fibroin hydrogel showed pro-angiogenic and inflammation inhibitory abilities. Its photo-crosslinking ability makes it suitable for matching irregular alveolar bone defects. Thus, the photo-crosslinkable silk fibroin-derived hydrogel is a potential candidate for constructing scaffolds for alveolar bone regeneration.

Objective

This study aimed to develop a pro-angiogenic hydrogel with in situ gelation ability for alveolar bone defects repair. Methodology: Silk fibroin was chemically modified by Glycidyl Methacrylate (GMA), which was evaluated by proton nuclear magnetic resonance (1H-NMR). Then, the photo-crosslinking ability of the modified silk fibroin was assessed. Scratch and transwell-based migration assays were conducted to investigate the effect of the photo-crosslinked silk fibroin hydrogel on the migration of human umbilical vein endothelial cells (HUVECs). In vitro angiogenesis was conducted to examine whether the photo-crosslinked silk fibroin hydrogel would affect the tube formation ability of HUVECs. Finally, subcutaneous implantation experiments were conducted to further examine the pro-angiogenic ability of the photo-crosslinked silk fibroin hydrogel, in which the CD31 and α-smooth muscle actin (α-SMA) were stained to assess neovascularization. The tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) were also stained to evaluate inflammatory responses after implantation.

Results

GMA successfully modified the silk fibroin, which we verified by our 1H-NMR and in vitro photo-crosslinking experiment. Scratch and transwell-based migration assays proved that the photo-crosslinked silk fibroin hydrogel promoted HUVEC migration. The hydrogel also enhanced the tube formation of HUVECs in similar rates to Matrigel®. After subcutaneous implantation in rats for one week, the hydrogel enhanced neovascularization without triggering inflammatory responses.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。