Targeted Capture of Phylogenetically Informative Ves SINE Insertions in Genus Myotis

靶向捕获具有系统发育信息的 Myotis 属中的 Ves SINE 插入

阅读:5
作者:Roy N Platt 2nd, Yuhua Zhang, David J Witherspoon, Jinchuan Xing, Alexander Suh, Megan S Keith, Lynn B Jorde, Richard D Stevens, David A Ray

Abstract

Identification of retrotransposon insertions in nonmodel taxa can be technically challenging and costly. This has inhibited progress in understanding retrotransposon insertion dynamics outside of a few well-studied species. To address this problem, we have extended a retrotransposon-based capture and sequence method (ME-Scan [mobile element scanning]) to identify insertions belonging to the Ves family of short interspersed elements (SINEs) across seven species of the bat genus Myotis. We identified between 120,000 and 143,000 SINE insertions in six taxa lacking a draft genome by comparing to the M. lucifugus reference genome. On average, each Ves insertion was sequenced to 129.6 × coverage. When mapped back to the M. lucifugus reference genome, all insertions were confidently assigned within a 10-bp window. Polymorphic Ves insertions were identified in each taxon based on their mapped locations. Using cross-species comparisons and the identified insertion positions, a presence-absence matrix was created for approximately 796,000 insertions. Dollo parsimony analysis of more than 85,000 phylogenetically informative insertions recovered strongly supported, monophyletic clades that correspond with the biogeography of each taxa. This phylogeny is similar to previously published mitochondrial phylogenies, with the exception of the placement of M. vivesi. These results support the utility of our variation on ME-Scan to identify polymorphic retrotransposon insertions in taxa without a reference genome and for large-scale retrotransposon-based phylogenetics.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。