The muscle-intervertebral disc interaction mediated by L-BAIBA modulates extracellular matrix homeostasis and PANoptosis in nucleus pulposus cells

L-BAIBA 介导的肌肉-椎间盘相互作用调节髓核细胞外基质稳态和全层细胞凋亡

阅读:4
作者:Tianyu Qin #, Ming Shi #, Chao Zhang #, Jiajun Wu, Zhengqi Huang, Xiaohe Zhang, Shuangxing Li, Yuliang Wu, Weitao Han, Bo Gao, Kang Xu, Song Jin, Wei Ye

Abstract

Upon engaging in physical activity, skeletal muscle synthesizes myokines, which not only facilitate crosstalk with various organs, including the brain, adipose tissue, bone, liver, gut, pancreas, and skin but also promote intramuscular signaling. Crosstalk is vital for maintaining various physiological processes. However, the specific interactions between skeletal muscle and intervertebral discs remain largely unexplored. β-Aminoisobutyric acid (BAIBA), an exercise-induced myokine and a metabolite of branched-chain amino acids in skeletal muscle, has emerged as a key player in this context. Our study demonstrated that exercise significantly elevates BAIBA levels in skeletal muscle, plasma, and nucleus pulposus (NP) tissues. Moreover, exercise enhances extracellular matrix (ECM) synthesis in NP tissues and upregulates L-BAIBA synthase in skeletal muscle. Both in vivo and in vitro evidence revealed that L-BAIBA impedes PANoptosis and ECM degradation in NP cells by activating the AMPK/NF-κB signaling pathway. These findings suggest that exercise, coupled with the resulting increase in L-BAIBA, may serve as an effective intervention to decelerate the progression of intervertebral disc degeneration (IDD). Consequently, L-BAIBA, which originates from skeletal muscle, is a promising new therapeutic approach for IDD.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。