Loss of p53 enhances catalytic activity of IKKbeta through O-linked beta-N-acetyl glucosamine modification

p53 的缺失通过 O-连接的 β-N-乙酰葡萄糖胺修饰增强了 IKKbeta 的催化活性

阅读:9
作者:Keiko Kawauchi, Keigo Araki, Kei Tobiume, Nobuyuki Tanaka

Abstract

The IkappaB kinase (IKK)-NF-kappaB pathway plays a critical role in oncogenesis. Recently, we have shown that p53 regulates glucose metabolism through the IKK-NF-kappaB pathway and that, in the absence of p53, the positive feedback loop between IKK-NF-kappaB and glycolysis has an integral role in oncogene-induced cell transformation. Here, we demonstrate that IKKbeta, a component of the IKK complex, was constitutively modified with O-linked beta-N-acetyl glucosamine (O-GlcNAc) in both p53-deficient mouse embryonic fibroblasts (MEFs) and transformed human fibroblasts. In p53-deficient cells, the O-GlcNAcylated IKKbeta and the activating phosphorylation of IKK were decreased by p65/NF-kappaB knockdown or glucose depletion. We also found that high glucose induced the O-GlcNAcylation of IKKbeta and sustained the TNFalpha-dependent IKKbeta activity. Moreover, the O-GlcNAcase inhibitor streptozotocin intensified O-GlcNAcylation and concomitant activating phosphorylation of IKKbeta. Mutational analysis revealed that O-GlcNAcylation of IKKbeta occurred at Ser 733 in the C-terminal domain, which was identified as an inactivating phosphorylation site, suggesting that IKKbeta O-GlcNAcylation regulates its catalytic activity. Taken together, we propose a novel mechanism for the enhancement of NF-kappaB activity by loss of p53, which evokes positive feedback regulation from enhanced glucose metabolism to IKK in oncogenesis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。