Functional knockout of the matrilin-3 gene causes premature chondrocyte maturation to hypertrophy and increases bone mineral density and osteoarthritis

matrilin-3 基因的功能性敲除导致软骨细胞过早成熟至肥大,并增加骨矿物质密度和骨关节炎

阅读:5
作者:Louise van der Weyden, Lei Wei, Junming Luo, Xu Yang, David E Birk, David J Adams, Allan Bradley, Qian Chen

Abstract

Mutations in the gene encoding matrilin-3 (MATN3), a noncollagenous extracellular matrix protein, have been reported in a variety of skeletal diseases, including multiple epiphyseal dysplasia, which is characterized by irregular ossification of the epiphyses and early-onset osteoarthritis, spondylo-epimetaphyseal dysplasia, and idiopathic hand osteoarthritis. To assess the role of matrilin-3 in the pathogenesis of these diseases, we generated Matn3 functional knockout mice using embryonic stem cell technology. In the embryonic growth plate of the developing long bones, Matn3 null chondrocytes prematurely became prehypertrophic and hypertrophic, forming an expanded zone of hypertrophy. This expansion was attenuated during the perinatal period, and Matn3 homozygous null mice were viable and showed no gross skeletal malformations at birth. However, by 18 weeks of age, Matn3 null mice had a significantly higher total body bone mineral density than Matn1 null mice or wild-type littermates. Aged Matn3 null mice were much more predisposed to develop severe osteoarthritis than their wild-type littermates. Here, we show that matrilin-3 plays a role in modulating chondrocyte differentiation during embryonic development, in controlling bone mineral density in adulthood, and in preventing osteoarthritis during aging. The lack of Matn3 does not lead to postnatal chondrodysplasia but accounts for higher incidence of osteoarthritis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。