Preclinical modeling of metabolic syndrome to study the pleiotropic effects of novel antidiabetic therapy independent of obesity

代谢综合征的临床前建模,以研究独立于肥胖的新型抗糖尿病疗法的多效性作用

阅读:8
作者:Jonathan P Mochel, Jessica L Ward, Thomas Blondel, Debosmita Kundu, Maria M Merodio, Claudine Zemirline, Emilie Guillot, Ryland T Giebelhaus, Paulina de la Mata, Chelsea A Iennarella-Servantez, April Blong, Seo Lin Nam, James J Harynuk, Jan Suchodolski, Asta Tvarijonaviciute, José Joaquín Cerón, Agn

Abstract

Cardiovascular-kidney-metabolic health reflects the interactions between metabolic risk factors, chronic kidney disease, and the cardiovascular system. A growing body of literature suggests that metabolic syndrome (MetS) in individuals of normal weight is associated with a high prevalence of cardiovascular diseases and an increased mortality. The aim of this study was to establish a non-invasive preclinical model of MetS in support of future research focusing on the effects of novel antidiabetic therapies beyond glucose reduction, independent of obesity. Eighteen healthy adult Beagle dogs were fed an isocaloric Western diet (WD) for ten weeks. Biospecimens were collected at baseline (BAS1) and after ten weeks of WD feeding (BAS2) for measurement of blood pressure (BP), serum chemistry, lipoprotein profiling, blood glucose, glucagon, insulin secretion, NT-proBNP, angiotensins, oxidative stress biomarkers, serum, urine, and fecal metabolomics. Differences between BAS1 and BAS2 were analyzed using non-parametric Wilcoxon signed-rank testing. The isocaloric WD model induced significant variations in several markers of MetS, including elevated BP, increased glucose concentrations, and reduced HDL-cholesterol. It also caused an increase in circulating NT-proBNP levels, a decrease in serum bicarbonate, and significant changes in general metabolism, lipids, and biogenic amines. Short-term, isocaloric feeding with a WD in dogs replicated key biological features of MetS while also causing low-grade metabolic acidosis and elevating natriuretic peptides. These findings support the use of the WD canine model for studying the metabolic effects of new antidiabetic therapies independent of obesity.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。