Theoretical study on the structure, spectroscopic, and current-voltage behavior of 11-Cis and Trans retinal isomers in rhodopsin

视紫红质中11-顺式和反式视黄醛异构体的结构、光谱和电流-电压行为的理论研究

阅读:7
作者:Amin Hamedian, Mohammad Vakili, Silvia A Brandán, Mahmood Akbari, Ayoub Kanaani, Vahidreza Darugar

Abstract

In this study, the electronic transport properties of 11-Cis and Trans retinal, components of rhodopsin, were investigated as optical molecular switches using the nonequilibrium Green's function (NEGF) formalism combined with first-principles density functional theory (DFT). These isomers, which can be reversibly converted into each other, were examined in detail. The structural and spectroscopic properties, including infrared (IR), Raman, nuclear magnetic resonance (NMR), and ultraviolet (UV) spectra, were analyzed using the hybrid B3LYP/6-311 + + G** level of theory. Complete vibrational assignments were performed for both forms utilizing the scaled quantum mechanical force field (SQMFF) methodology. To evaluate the conductivity of these molecules, we utilized current-voltage (I-V) characteristics, transmission spectra, molecular projected self-consistent Hamiltonian (MPSH), HOMO-LUMO gap, and second-order interaction energies (E2). The trendline extrapolation of the current-voltage plots confirmed our findings. We investigated the effect of different electrodes (Ag, Au, Pt) and various connection sites (hollow, top, bridge) on conductivity. The Ag electrode with the hollow site exhibited the highest efficiency. Our results indicate that the Cis form has higher conductivity than the Trans form.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。