Receptor-independent regulation of Gα13 by alpha-1-antitrypsin C-terminal peptides

α-1-抗胰蛋白酶 C 末端肽对 Gα13 的受体非依赖性调节

阅读:5
作者:Yonghak Park, Shigeyuki Matsumoto, Kosuke Ogata, Biao Ma, Ryo Kanada, Yuta Isaka, Norihito Arichi, Xiaowen Liang, Ritsuko Maki, Tohru Kozasa, Yasushi Okuno, Hiroaki Ohno, Yasushi Ishihama, Fumiko Toyoshima

Abstract

Alpha-1-antitrypsin (AAT), a circulating serine protease inhibitor, is an acute inflammatory response protein with anti-inflammatory functions. The C-terminal peptides of AAT are found in various tissues and have been proposed as putative bioactive peptides with multiple functions, but its mechanism of action remains unclear. We previously reported that a mouse AAT C-terminal peptide of 35 amino acids (mAAT-C1-35) penetrates plasma membrane and associates guanine nucleotide-binding protein subunit alpha 13 (Gα13). Here, we show that mAAT-C1-35 binds directly to the guanosine diphosphate (GDP)-bound form of Gα13 through the N-terminal region (mAAT-C1-17), thereby facilitating the interaction of Gα13・GDP with its effector proteins. The minimal sequence (mAAT-C3-16) and essential amino acid residue (Phe11) of mAAT-C1-17 were identified as being necessary for this effect. A molecular dynamics simulation for the Gα13・GDP-mAAT-C1-17 complex model showed that binding of mAAT-C1-17 to the region surrounded by switch regions of Gα13 stabilizes the flexible switch II and III regions, thereby maintaining their active conformation. In addition, mAAT-C1-35 activates the Gα13 signaling pathway in cells where Phe11 is required. Our study reveals the structure-based mechanism of action of AAT-C peptides in the regulation of Gα13 and demonstrates that AAT-C peptides represent a biological peptide capable of activating G protein signals in a manner that is independent of G-protein-coupled receptors.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。