A monoclonal antibody that conveys in vitro killing and partial protection in experimental syphilis binds a phosphorylcholine surface epitope of Treponema pallidum

一种在实验性梅毒中发挥体外杀灭和部分保护作用的单克隆抗体与梅毒螺旋体的磷酰胆碱表面表位结合

阅读:8
作者:David R Blanco, Cheryl I Champion, Alek Dooley, David L Cox, Julian P Whitelegge, Kym Faull, Michael A Lovett

Abstract

Immunization with purified Treponema pallidum outer membrane vesicles (OMV) has previously resulted in high-titer complement-dependent serum bactericidal activity. In this study, OMV immunization resulted in the isolation of a monoclonal antibody, M131, with complement-dependent killing activity. Passive immunization of rabbits with M131 administered intravenously conferred significant immunity demonstrated by the failure of syphilitic lesions to appear at 29% of intradermal challenge sites (7/24) and a mean delay of approximately 8 days to lesion appearance at the remaining sites (17/24). M131 not only bound to OMV and to the surfaces of intact motile T. pallidum cells but also bound to organisms whose outer membranes were removed, indicating both surface and subsurface locations for the killing target. This target was determined to be a T. pallidum lipid. Lipid extracted from T. pallidum and made into liposomes bound M131. Reverse-phase high-pressure liquid chromatography separation and fraction collection mass spectrometry (LC-MS+) of T. pallidum lipid showed that the target of M131 was phosphorylcholine. M131 binding required both liposome formation and a critical concentration of phospholipid containing phosphorylcholine, suggesting that the epitope has both a conformational and a compositional requirement. M131 did not react with red blood cells, which have phosphorylcholine-containing lipids in their exterior membrane leaflets, or with Venereal Disease Research Laboratory antigen that also contains phosphorylcholine, further indicating the specificity of M131. This is the first physical demonstration of an antigen on the T. pallidum surface and indication that such a surface antigen can be a target of immunity.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。