MiR-142-3p regulates synaptopathy-driven disease progression in multiple sclerosis

MiR-142-3p 调节多发性硬化症中突触病变驱动的疾病进展

阅读:8
作者:Francesca De Vito, Alessandra Musella, Diego Fresegna, Francesca Romana Rizzo, Antonietta Gentile, Mario Stampanoni Bassi, Luana Gilio, Fabio Buttari, Claudio Procaccini, Alessandra Colamatteo, Silvia Bullitta, Livia Guadalupi, Silvia Caioli, Valentina Vanni, Sara Balletta, Krizia Sanna, Antonio Bru

Aim

We recently proposed miR-142-3p as a molecular player in inflammatory synaptopathy, a new pathogenic hallmark of multiple sclerosis (MS) and of its mouse model experimental autoimmune encephalomyelitis (EAE), that leads to neuronal loss independently of demyelination. MiR-142-3p seems to be unique among potential biomarker candidates in MS, since it is an inflammatory miRNA playing a dual role in the immune and central nervous systems. Here, we aimed to verify the impact of miR-142-3p circulating in the cerebrospinal fluid (CSF) of MS patients on clinical parameters, neuronal excitability and its potential interaction with disease modifying therapies (DMTs).

Conclusion

MiR-142-3p is a novel and potential negative prognostic CSF marker of MS and a promising tool for identifying personalised therapies.

Results

In a cohort of 151 MS patients, we found positive correlations between CSF miR-142-3p levels and clinical progression, IL-1β signalling as well as synaptic excitability measured by transcranial magnetic stimulation. Furthermore, therapy response of patients with 'low miR-142-3p' to dimethyl fumarate (DMF), an established disease-modifying treatment (DMT), was superior to that of patients with 'high miR-142-3p' levels. Accordingly, the EAE clinical course of heterozygous miR-142 mice was ameliorated by peripheral DMF treatment with a greater impact relative to their wild type littermates. In addition, a central protective effect of this drug was observed following intracerebroventricular and ex vivo acute treatments of EAE wild type mice, showing a rescue of miR-142-3p-dependent glutamatergic alterations. By means of electrophysiology, molecular and biochemical analysis, we suggest miR-142-3p as a molecular target of DMF.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。