The PTH-Gαs-protein kinase A cascade controls αNAC localization to regulate bone mass

PTH-Gαs-蛋白激酶A级联控制αNAC定位来调节骨量

阅读:5
作者:Martin Pellicelli, Julie A Miller, Alice Arabian, Claude Gauthier, Omar Akhouayri, Joy Y Wu, Henry M Kronenberg, René St-Arnaud

Abstract

The binding of PTH to its receptor induces Gα(s)-dependent cyclic AMP (cAMP) accumulation to turn on effector kinases, including protein kinase A (PKA). The phenotype of mice with osteoblasts specifically deficient for Gα(s) is mimicked by a mutation leading to cytoplasmic retention of the transcriptional coregulator αNAC, suggesting that Gαs and αNAC form part of a common genetic pathway. We show that treatment of osteoblasts with PTH(1-34) or the PKA-selective activator N(6)-benzoyladenosine cAMP (6Bnz-cAMP) leads to translocation of αNAC to the nucleus. αNAC was phosphorylated by PKA at serine 99 in vitro. Phospho-S99-αNAC accumulated in osteoblasts exposed to PTH(1-34) or 6Bnz-cAMP but not in treated cells expressing dominant-negative PKA. Nuclear accumulation was abrogated by an S99A mutation but enhanced by a phosphomimetic residue (S99D). Chromatin immunoprecipitation (ChIP) analysis showed that PTH(1-34) or 6Bnz-cAMP treatment leads to accumulation of αNAC at the Osteocalcin (Ocn) promoter. Altered gene dosages for Gα(s) and αNAC in compound heterozygous mice result in reduced bone mass, increased numbers of osteocytes, and enhanced expression of Sost. Our results show that αNAC is a substrate of PKA following PTH signaling. This enhances αNAC translocation to the nucleus and leads to its accumulation at target promoters to regulate transcription and affect bone mass.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。