microRNA and mRNA profiles in nucleus accumbens underlying depression versus resilience in response to chronic stress

伏隔核中 microRNA 和 mRNA 谱与抑郁和慢性应激反应相关

阅读:6
作者:Yawei Si, Zhenhua Song, Xiaoyan Sun, Jin-Hui Wang

Abstract

Major depression in negative mood is presumably induced by chronic stress with lack of reward. However, most individuals who experience chronic stress demonstrate resilience. Molecular mechanisms underlying stress- induced depression versus resilience remain unknown, which are investigated in brain reward circuits. Mice were treated by chronic unpredictable mild stress (CUMS) for 4 weeks. The tests of sucrose preference, Y-maze, and forced swimming were used to identify depression-like emotion behavior or resilience. High-throughput sequencing was used to analyze mRNA and miRNA quantity in the nucleus accumbens (NAc) harvested from the mice in the groups of control, CUMS-induced depression (CUMS-MDD), and CUMS-resistance to identify molecular profiles of CUMS-MDD versus CUMS-resilience. In data analyses and comparison among three groups, 1.5-fold ratio in reads per kilo-base per million reads (RPKM) was set to judge involvements of mRNA and miRNA in CUMS, MDD, or resilience. The downregulations of serotonergic/dopaminergic synapses, MAPK/calcium signaling pathways, and morphine addiction as well as the upregulations of cAMP/PI3K-Akt signaling pathways and amino acid metabolism are associated with CUMS-MDD. The downregulations of chemokine signaling pathway, synaptic vesicle cycle, and nicotine addiction as well as the upregulations of calcium signaling pathway and tyrosine metabolism are associated with CUMS-resilience. The impairments of serotonergic/dopaminergic synapses and PI3K-Akt/MAPK signaling pathways in the NAc are associated with depression. The upregulation of these entities is associated with resilience. Consistent results from analyzing mRNA/miRNA and using different methods validate our finding and conclusion.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。