Structural Insight into a Human Neutralizing Antibody against Influenza Virus H7N9

人类抗流感病毒 H7N9 中和抗体的结构解析

阅读:11
作者:Cong Chen, Liguo Liu, Yan Xiao, Sheng Cui, Jianmin Wang, Qi Jin

Abstract

Since its first emergence in East China in early 2013, many cases of avian influenza A H7N9 have been reported. The disease has extended to 22 provinces in mainland China and some surrounding areas. Strategies to combat viral infection are urgently needed. We previously isolated a human monoclonal antibody, HNIgGA6, that neutralized the H7N9 virus both in vitro and in vivo In this study, we determined the crystal structure of viral hemagglutinin (HA) globular head bound to the fragment antigen-binding region (Fab) of HNIgGA6. The crystal structure shows that the tip of the HNIgGA6 heavy-chain complementarity-determining region 3 (HCDR3) directly interposes into the receptor binding site (RBS) and mimics, in many respects, the interaction of the sialic acid receptor. Three residues at Y98, H183, and E190, which are critical to human cellular receptor binding, are also essential for HNIgGA6 recognition. Meanwhile, dual mutations at V186G and L226Q in RBS were able to disrupt viral HA1 binding with the antibody. Our study provides a better understanding of the mechanism for protective antibody recognition and a sound foundation for the design of therapeutic drugs and vaccines against H7N9 influenza.IMPORTANCE Neutralization by antibody is one of the most important mechanisms for a host to defend against viral infections. Human-originated antibody HNIgGA6 was generated in response to the natural infectious H7N9 virus and showed potential for use in suppression of H7N9 infection, with possible therapeutic implications. The crystal structure of the HNIgGA6/HA1 complex provided new insight into the protective immune response to H7N9 virus in humans, as well as possibilities for the development of effective H7N9 pandemic vaccines and antiviral molecules.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。