Epstein-Barr virus protein BKRF4 restricts nucleosome assembly to suppress host antiviral responses

EB病毒蛋白BKRF4限制核小体组装以抑制宿主的抗病毒反应

阅读:8
作者:Jiao Chen, Zuer Lu, Weibin Gong, Xue Xiao, Xiaoli Feng, Wei Li, Shan Shan, Dongyi Xu, Zheng Zhou

Abstract

Inhibition of host DNA damage response (DDR) is a common mechanism used by viruses to manipulate host cellular machinery and orchestrate viral life cycles. Epstein-Barr virus tegument protein BKRF4 associates with cellular chromatin to suppress host DDR signaling, but the underlying mechanism remains elusive. Here, we identify a BKRF4 histone binding domain (residues 15-102, termed BKRF4-HBD) that can accumulate at the DNA damage sites to disrupt 53BP1 foci formation. The high-resolution structure of the BKRF4-HBD in complex with a human H2A-H2B dimer shows that BKRF4-HBD interacts with the H2A-H2B dimer via the N-terminal region (NTR), the DWP motif (residues 80-86 containing D81, W84, P86), and the C-terminal region (CTR). The "triple-anchor" binding mode confers BKRF4-HBD the ability to associate with the partially unfolded nucleosomes, promoting the nucleosome disassembly. Importantly, disrupting the BKRF4-H2A-H2B interaction impairs the binding between BKRF4-HBD and nucleosome in vitro and inhibits the recruitment of BKRF4-HBD to DNA breaks in vivo. Together, our study reveals the structural basis of BKRF4 bindings to the partially unfolded nucleosome and elucidates an unconventional mechanism of host DDR signal attenuation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。