An effective serum- and xeno-free chemically defined freezing procedure for human embryonic and induced pluripotent stem cells

一种针对人类胚胎和诱导性多能干细胞的有效无血清和无异种化学定义的冷冻程序

阅读:5
作者:Frida Holm, Susanne Ström, José Inzunza, Duncan Baker, Anne-Marie Strömberg, Björn Rozell, Anis Feki, Rosita Bergström, Outi Hovatta

Background

Both human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs) bear a great potential in regenerative medicine. In addition to optimized clinical grade culture conditions, efficient clinical grade cryopreservation

Conclusion

The defined freezing-thawing system described here offers an excellent simple option for banking of hESCs and iPSCs.

Methods

We used a novel, chemically defined effective xeno-free cryopreservation system for cryostorage and banking of hESCs and iPSCs. The earlier established slow freezing protocols have, even after recent improvements, resulted in low viability and thawed cells had a high tendency to differentiate. The medium is a completely serum and animal substance free product containing dimethylsulfoxide, anhydrous dextrose and a polymer as cryoprotectants. The cells were directly frozen at -70 degrees C, without a programmed freezer.

Results

The number of frozen colonies versus the number of surviving colonies differed significantly for both HS293 (chi(2) = 9.616 with one degree of freedom and two-tailed P = 0.0019) and HS306 (chi(2) = 8.801 with one degree of freedom and two-tailed P = 0.0030). After thawing, the cells had a high viability (90-96%) without any impact on proliferation and differentiation, compared with the standard freezing procedure where viability was much lower (49%). The frozen-thawed hESCs and iPSCs had normal karyotype and maintained properties of pluripotent cells with corresponding morphological characteristics, and expressed pluripotency markers after 10 passages in culture. They formed teratomas containing tissue components of the three germ layers.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。