Structural asymmetry of the terminal catalytic complex in selenocysteine synthesis

硒半胱氨酸合成中末端催化复合物的结构不对称

阅读:6
作者:Rachel L French, Nirupama Gupta, Paul R Copeland, Miljan Simonović

Abstract

Selenocysteine (Sec), the 21(st) amino acid, is synthesized from a serine precursor in a series of reactions that require selenocysteine tRNA (tRNA(Sec)). In archaea and eukaryotes, O-phosphoseryl-tRNA(Sec):selenocysteinyl-tRNA(Sec) synthase (SepSecS) catalyzes the terminal synthetic reaction during which the phosphoseryl intermediate is converted into the selenocysteinyl moiety while being attached to tRNA(Sec). We have previously shown that only the SepSecS tetramer is capable of binding to and recognizing the distinct fold of tRNA(Sec). Because only two of the four tRNA-binding sites were occupied in the crystal form, a question was raised regarding whether the observed arrangement and architecture faithfully recapitulated the physiologically relevant ribonucleoprotein complex important for selenoprotein formation. Herein, we determined the stoichiometry of the human terminal synthetic complex of selenocysteine by using small angle x-ray scattering, multi-angle light scattering, and analytical ultracentrifugation. In addition, we provided the first estimate of the ratio between SepSecS and tRNA(Sec) in vivo. We show that SepSecS preferentially binds one or two tRNA(Sec) molecules at a time and that the enzyme is present in large molar excess over the substrate tRNA in vivo. Moreover, we show that in a complex between SepSecS and two tRNAs, one enzyme homodimer plays a role of the noncatalytic unit that positions CCA ends of two tRNA(Sec) molecules into the active site grooves of the other, catalytic, homodimer. Finally, our results demonstrate that the previously determined crystal structure represents the physiologically and catalytically relevant complex and suggest that allosteric regulation of SepSecS might play an important role in regulation of selenocysteine and selenoprotein synthesis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。