Background
Thyroid carcinoma (TC) is an increasingly common malignancy of endocrine organs, and its most frequently encountered histotype is papillary thyroid cancer (PTC). Identifying new potential gene alterations is important for completely elucidating the mechanism of PTC initiation and progression. Thus, we performed whole transcriptome sequence analysis (RNA-seq) on 79 PTC tissue samples and paired adjacent nontumor tissue samples to study the molecular mechanism of TC tumorigenesis and progression further. The
Conclusion
The downregulation of SPTBN2 caused apoptosis and retarded G1/S cell cycle transition in TC cells. Thus, SPTBN2 may be a good candidate gene for TC diagnosis and therapy.
Methods
We examined SPTBN2 gene expression in 48 papillary thyroid tumor tissues and paired adjacent normal thyroid tissues by using qRT-PCR. SPTBN2 expression in the TC cell lines was silenced by small interfering RNA. Then, the transfected TC cells were used to investigate the in vitro function of SPTBN2. Result: The expression of SPTBN2 was significantly upregulated in our RNA-seq cohort, our local validated cohort, and TCGA RNA-seq cohort. The
