Dioscin pretreatment ameliorates ferroptosis in cardiomyocytes after myocardial infarction via inhibiting endoplasmic reticulum stress

薯蓣皂苷预处理通过抑制内质网应激改善心肌梗死后心肌细胞铁死亡

阅读:5
作者:Chang Wu #, Xueping Shen #, Pan Lou, Dongyan Song

Background

Myocardial infarction (MI) remains a leading cause of mortality globally, often resulting in irreversible damage to cardiomyocytes. Ferroptosis, a recently identified form of regulated cell death driven by iron-dependent lipid peroxidation, has emerged as a significant contributor to post-MI cardiac injury. The endoplasmic reticulum (ER) stress response has been implicated in exacerbating ferroptosis.

Conclusion

Overall, our findings suggested that Dioscin holds promise as a therapeutic agent against post-MI cardiac injury by mitigating ferroptosis via the suppression of ER stress. Further investigations into the precise molecular mechanisms and clinical translation of Dioscin's cardioprotective effects are warranted, offering a potential avenue for novel therapeutic interventions in MI-related cardiac complications.

Methods

Here, we investigated the potential of Dioscin, a natural compound known for its diverse pharmacological properties, in mitigating ferroptosis in cardiomyocytes following MI by targeting ER stress.

Results

In animal models subjected to MI, administration of Dioscin notably improved cardiac function, reduced infarct size by approximately 24%, and prevented adverse remodeling, highlighting its therapeutic potential. Through in vitro and in vivo models of MI, we demonstrated that Dioscin treatment significantly attenuates ferroptosis in cardiomyocytes, as evidenced by a decrease in lipid peroxidation by about 19% and preserved mitochondrial integrity. Moreover, Dioscin exerted its protective effects by inhibiting ER stress markers, such as the phosphorylation levels of PERK and eIF2α proteins, and the expression levels of BIP and ATF4 proteins, thus disrupting the ER stress-mediated signaling cascade associated with ferroptosis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。