Modeling protease-sensitive human pancreatic lipase mutations in the mouse ortholog

在小鼠直系同源物中模拟蛋白酶敏感的人类胰腺脂肪酶突变

阅读:6
作者:Gyula Hoffka, Samara Mhana, Marcell Vas, Vanda Toldi, János András Mótyán, József Tőzsér, András Szabó

Abstract

Pancreatic lipase (PNLIP) is the major lipolytic enzyme secreted by the pancreas. A recent study identified human PNLIP variants P245A, I265R, F300L, S304F, and F314L in European cohorts with chronic pancreatitis. Functional analyses indicated that the variants were normally secreted but exhibited reduced stability when exposed to pancreatic proteases. Proteolysis of the PNLIP variants yielded an intact C-terminal domain, while the N-terminal domain was degraded. The protease-sensitive PNLIP phenotype was strongly correlated with chronic pancreatitis, suggesting a novel pathological pathway underlying the disease. To facilitate preclinical mouse modeling, here we investigated how the human mutations affected the secretion and proteolytic stability of mouse PNLIP. We found that variants I265R, F300L, S304F, and F314L were secreted at high levels, while P245A had a secretion defect and accumulated inside the cells. Proteolysis experiments indicated that wild-type mouse PNLIP was resistant to cleavage, while variant I265R was readily degraded by mouse trypsin and chymotrypsin C. Variants F300L, S304F, and F314L were unaffected by trypsin but were slowly proteolyzed by chymotrypsin C. The proteases degraded the N-terminal domain of variant I265R, leaving the C-terminal domain intact. Structural analyses suggested that changes in stabilizing interactions around the I265R mutation site contribute to the increased proteolytic susceptibility of this variant. The results demonstrate that variant I265R is the best candidate for modeling the protease-sensitive PNLIP phenotype in mice.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。