Gonadotropin inhibitory hormone inhibits basal forebrain vGluT2-gonadotropin-releasing hormone neurons via a direct postsynaptic mechanism

促性腺激素抑制激素通过直接突触后机制抑制基底前脑 vGluT2-促性腺激素释放激素神经元

阅读:5
作者:Min Wu, Iryna Dumalska, Elena Morozova, Anthony N van den Pol, Meenakshi Alreja

Abstract

The novel hypothalamic peptides avian gonadotropin inhibitory hormone (GnIH) and its mammalian analogue RFRP-3, are emerging as key negative regulators of reproductive functions across species. GnIH/RFRP-3 reduces gonadotropin release and may play an inhibitory role in ovulation and seasonal reproduction, actions opposite to that of the puberty-promoting kisspeptins. GnIH directly inhibits gonadotropin release from the anterior pituitary in birds. GnIH/RFRP-3-immunoreactive fibres also abut the preoptic-septal gonadotropin-releasing hormone (GnRH) neurons, suggesting an additional site of action that has not been studied at the cellular level. Using anatomical labelling and electrophysiological recordings in septal brain slices from GnRH-GFP, vGluT2-GFP and GAD67-GFP mice, we report inhibitory actions of GnIH/RFRP-3 on kisspeptin-activated vGluT2 (vesicular glutamate transporter 2)-GnRH neurons as well as on kisspeptin-insensitive GnRH neurons, but not on cholinergic or GABAergic neurons (n = 531). GnIH and RFRP-3 produced a strikingly similar non-desensitizing hyperpolarization following brief 15 s applications (GnIH: 9.3 +/- 1.9 mV; RFRP-3: 9.0 +/- 0.9 mV) with IC(50) values of 34 and 37 nm, respectively. The inhibitory effect was mediated via a direct postsynaptic Ba(2+)-sensitive K(+) current mechanism and could prevent or interrupt kisspeptin-induced activation of vGluT2-GnRH neurons. GnIH-immunoreactive fibres were in apparent contact with vGluT2-GFP neurons. Thus, GnIH/RFRP-3 could reduce GnRH and glutamate release in target brain regions and in the median eminence via a direct inhibition of vGluT2-GnRH neurons. This in turn could suppress gonadotropin release, influence reproductive development and alter sex behaviour.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。