Atmospheric CO2 captured by biogenic polyamines is transferred as a possible substrate to Rubisco for the carboxylation reaction

生物多胺捕获的大气中的二氧化碳被转移到 Rubisco 中,作为羧化反应的可能底物

阅读:9
作者:Ko Yasumoto, Tsuyoshi Sakata, Jun Yasumoto, Mina Yasumoto-Hirose, Shun-Ichi Sato, Kanami Mori-Yasumoto, Mitsuru Jimbo, Takenori Kusumi, Shugo Watabe

Abstract

Biogenic polyamines are involved in a wide range of plant cellular processes, including cell division, morphogenesis and stress responses. However, the exact roles of biogenic polyamines are not well understood. We recently reported that biogenic polyamines that have multiple amino groups can react with CO2 and accelerate calcium carbonate formation in seawater. The ability of biogenic polyamines to capture atmospheric CO2 prompted us to examine their roles in photosynthesis. Here, we demonstrated that atmospheric CO2 captured by biogenic polyamines is a candidate substrate for the carboxylation reaction of ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco), which is an enzyme involved in the first major step of carbon fixation during photosynthesis, and that biogenic polyamines can accelerate the carboxylation reaction of this enzyme because of their specific affinity for CO2. Moreover, the results of our nuclear magnetic resonance (NMR) analysis showed that putrescine, which is the most common biogenic polyamine, reacts with atmospheric CO2 and promotes the formation of carbamate derivatives and bicarbonate in aqueous environments. A sufficient amount of CO2 is well known to be produced by carbonic anhydrase from bicarbonate in vivo. The present study indicates that CO2 would be also produced by the equilibrium reaction from carbonate produced by biogenic polyamines and would be used as a substrate of Rubisco, too. Our results may suggest a new photosynthetic research strategy that involves CO2-concentrating mechanisms and also possibly constitutes a potential tool for reducing atmospheric CO2 levels and, consequently, global warming.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。