Recapture Lysosomal Enzyme Deficiency via Targeted Gene Disruption in the Human Near-Haploid Cell Line HAP1

通过靶向基因破坏重新捕获人类近单倍体细胞系 HAP1 中的溶酶体酶缺陷

阅读:4
作者:Annie Brown, Jiayi Zhang, Brendan Lawler, Biao Lu

Background

Advancement in genome engineering enables rapid and targeted disruption of any coding sequences to study gene functions or establish human disease models. We explored whether this approach can be used to study Gaucher disease, one of the most common types of lysosomal storage diseases (LSDs) in a near-haploid human cell line (HAP1).

Conclusions

Targeted gene disruption in human HAP1 cells enables rapid establishment of the Gaucher model to capture the key pathology and to test replacement therapy. We expect that this streamlined method can be used to generate human disease models of other LSDs, most of which are still lacking both appropriate human disease models and specific treatments to date.

Results

CRISPR-Cas9 targeting to coding sequences of β-glucocerebrosidase (GBA), the causative gene of Gaucher disease, resulted in an insertional mutation and premature termination of GBA. We confirmed the GBA knockout at both the gene and enzyme levels by genotyping and GBA enzymatic assay. Characterization of the knockout line showed no significant changes in cell morphology and growth. Lysosomal staining revealed more granular lysosomes in the cytosol of the GBA-knockout line compared to its parental control. Flow cytometry analysis further confirmed that more lysosomes accumulated in the cytosol of the knockout line, recapturing the disease phenotype. Finally, we showed that this knockout cell line could be used to evaluate a replacement therapy by recombinant human GBA. Conclusions: Targeted gene disruption in human HAP1 cells enables rapid establishment of the Gaucher model to capture the key pathology and to test replacement therapy. We expect that this streamlined method can be used to generate human disease models of other LSDs, most of which are still lacking both appropriate human disease models and specific treatments to date.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。