Background
Plant extracts contain a huge variety of pharmacologically active substances. Conventionally, various chromatographic
Conclusions
We calculated AUCs in order to compare scoring methods quantitatively. Scoring systems were compared and calculated AUCs, where the AUCs for new scoring systems (0.98 and 0.99) were higher than the previously used correlation coefficient (AUC = 0.89). Using the new scoring algorithms, we successfully enriched thirteen unknown strong antioxidant candidates in addition to known antioxidants, methyl syringin and naringenin (3.5 ng) in mulberry extract. Targeted purification of these unknown candidates will significantly reduce purification time and labor.
Results
The mulberry fruit was first separated into 33 fractions by LC and analyzed using high-resolution mass spectrometry. The antioxidative strength of the 33 fractions and standard antioxidants was measured. To validate the efficiency of this antioxidant discovery method, correlations between the antioxidation activity profile and changes in mass intensity of components within the 33 fractions were calculated to provide relative scores for the antioxidant candidate list. Enrichment curves and area under the curve (AUC) values were then calculated to compare the performance of the methods. Using this improved scoring method, five strong antioxidants, chlorogenic acid (14.2 ng), dihydoxy quercetin (46.2 ng), rutin (154.0 ng), quercetin (71.7 ng) and luteolin (3.5 ng) in 2 kg mulberry fruit, were found within the top 20 candidates. Conclusions: We calculated AUCs in order to compare scoring methods quantitatively. Scoring systems were compared and calculated AUCs, where the AUCs for new scoring systems (0.98 and 0.99) were higher than the previously used correlation coefficient (AUC = 0.89). Using the new scoring algorithms, we successfully enriched thirteen unknown strong antioxidant candidates in addition to known antioxidants, methyl syringin and naringenin (3.5 ng) in mulberry extract. Targeted purification of these unknown candidates will significantly reduce purification time and labor.
