Comparing Migratory and Mechanical Properties of Human Bone Marrow-Derived Mesenchymal Stem Cells with Colon Cancer Cells In Vitro

体外比较人类骨髓间充质干细胞与结肠癌细胞的迁移和机械特性

阅读:7
作者:Aditi Bhattacharya #, Sumedha Saluja #, Vishwanath Managuli, Sandeep Agrawal, Devanjan Dey, Bhavuk Garg, Mohammed Tahir Ansari, Sitikantha Roy, Sudip Sen

Background

Colon cancer cells can migrate and metastasize by undergoing epithelial-to-mesenchymal transition (EMT). Mesenchymal stem cells (MSCs) are non-cancerous, multipotent adult stem cells, which can also migrate. In this study, we wanted to compare the biological, physical, and functional properties of these migratory cells. Materials and

Conclusions

Our findings indicate that the migratory properties of MSCs is comparable or even greater than that of cancer cells and despite their high migration potential, they also have the maximum stiffness.

Methods

HT-29 and HCT-116, two human colon carcinoma cell lines, represent less aggressive and more aggressive cancer cells, respectively. MSCs were isolated from human bone marrow. After confirming the identity of all the cell types, they were evaluated for E-cadherin, β1-integrin, Vimentin, ZEB-1, β-catenin, and 18S rRNA using Q-PCR. MMP-2 and MMP-9 activity were evaluated using gelatin zymography. Functional tests like wound healing assay, migration assay, and invasion assay were also done. Biomechanical properties like cell stiffness and non-specific adhesion (between indenter probe and cell membrane) were evaluated through nanoindentation using atomic force microscopy (AFM).

Results

Expression of EMT and stem cell markers showed typical expression patterns for HT-29, HCT-116, and MSCs. Functional tests showed that MSCs migrated faster than malignant cells. MMP-2 and MMP-9 activity reinforced this behavior. Interestingly, the migration/invasion capacity of MSCs was comparable to aggressive HCT-116, and more than HT-29. MSCs also showed the maximum cell stiffness and non-specific cell-probe adhesions, followed by HCT116 and HT29 cells. Conclusions: Our findings indicate that the migratory properties of MSCs is comparable or even greater than that of cancer cells and despite their high migration potential, they also have the maximum stiffness.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。