Role of trans-resveratrol in ameliorating biochemical and molecular alterations in obese rats induced by a high fructose/fat diet

反式白藜芦醇在改善高果糖/脂肪饮食引起的肥胖大鼠生化和分子改变中的作用

阅读:6
作者:Marwa Maher Khamis, Said Salama Moselhy, Shaimaa Rihan

Abstract

We evaluated the effect of trans-resveratrol (RSV) in ameliorating biochemical and molecular alterations in obese Wister male rats fed on high-fat/high-fructose-fed. Male Wister rats were divided into eight groups and fed with either a standard diet (control), high fructose (HF), high fat (HFAT), or a high- fructose high- fat (HF/HFAT) diet and supplemented with RSV (30 mg/kg/day) for 4 weeks. The food intake, body weight, glycemic parameters, lipid profile, oxidative stress were assessed. SIRT1 gene expression, PGC-1α, cyto-c and GLUT-4 were evaluated by qRT-PCR in adipose tissue of normal and obese rats. The body weight gain, serum fasting glucose, insulin, and HOMA-IR values were significantly higher in the HF and HF/HFAT groups than in the HFAT and control groups. Hyperlipidemia was observed in high calorie diets fed rats compared to control group. The levels of total cholesterol, triglycerides and LDL-c were significantly elevated while HDL- c was significantly decreased in HF & HF/HFAT groups compared to HFAT group. The levels of serum malondialdhyde (MDA) and superoxide dismutase (SOD) activity in adipose tissue were elevated in all groups compared to control group, particularly in the groups that were kept on a high fructose diets (HF, HF/HFAT). SIRT-1, PGC-1α, Cyto-c, and GLUT-4 genes levels were significantly down regulated in HF, HFAT & HF/HFAT groups compared to control group. Supplementation of T-RSV restored the alteration in carbohydrates-lipid metabolism as well as oxidative stress and upregulation of SIRT-1, PGC-1α, Cyto-c, and GLUT-4 genes. RSV is a promising treatment in the management of pathologic consequences of obesity from high-calorie diet consumption via molecular alteration of target genes.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。