Implication of AMP-activated protein kinase in transient receptor potential vanilloid type 1-mediated activation of endothelial nitric oxide synthase

AMP 活化蛋白激酶在瞬时受体电位香草酸 1 型介导的内皮型一氧化氮合酶活化中的作用

阅读:6
作者:Li-Chieh Ching, Chien-Yu Chen, Kuo-Hui Su, Hsin-Han Hou, Song-Kun Shyue, Yu Ru Kou, Tzong-Shyuan Lee

Abstract

We investigated whether AMP-activated protein kinase (AMPK), a multi-functional regulator of energy homeostasis, is involved in transient receptor potential vanilloid type 1 (TRPV1)-mediated activation of endothelial nitric oxide synthase (eNOS) in endothelial cells (ECs) and mice. In ECs, treatment with evodiamine, the activator of TRPV1, increased the phosphorylation of AMPK, acetyl-CoA carboxylase (ACC) and eNOS, as revealed by western blot analysis. Inhibition of AMPK activation by compound C or dominant-negative AMPK mutant abrogated the evodiamine-induced increase in phosphorylation of AMPK and eNOS and NO bioavailability, as well as tube formation in ECs. Immunoprecipitation and two-hybrid analysis demonstrated that AMPK mediated the evodiamine-induced increase in the formation of a TRPV1-eNOS complex. Additionally, TRPV1 activation by evodiamine increased the phosphorylation of AMPK and eNOS in aortas of wild-type mice but did not activate eNOS in aortas of TRPV1-deficient mice. In mice, inhibition of AMPK activation by compound C markedly decreased evodiamine-evoked angiogenesis in Matrigel plugs and in a hind-limb ischemia model. Moreover, evodiamine-induced phosphorylation of AMPK and eNOS in aortas of apolipoprotein E deficient (ApoE(-/-)) mice was abrogated in TRPV1-deficient ApoE(-/-) mice. In conclusion, TRPV1 activation may trigger AMPK-dependent signaling, which leads to enhanced activation of AMPK and eNOS and retarded development of atherosclerosis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。