Adenine base editor-mediated splicing remodeling activates noncanonical splice sites

腺嘌呤碱基编辑器介导的剪接重塑激活非规范剪接位点

阅读:5
作者:Yuanyuan Liu, Qing Li, Tong Yan, Haoran Chen, Jiahua Wang, Yingyi Wang, Yeqin Yang, Lue Xiang, Zailong Chi, Kaiqun Ren, Bin Lin, Ge Lin, Jinsong Li, Yong Liu, Feng Gu1

Abstract

Adenine base editors (ABEs) are genome-editing tools that have been harnessed to introduce precise A•T to G•C conversion. The discovery of split genes revealed that all introns contain two highly conserved dinucleotides, canonical "AG" (acceptor) and "GT" (donor) splice sites. ABE can directly edit splice acceptor sites of the adenine (A) base, leading to aberrant gene splicing, which may be further adopted to remodel splicing. However, spliced isoforms triggered with ABE have not been well explored. To address it, we initially generated a cell line harboring C-terminal enhanced GFP (eGFP)-tagged β-actin (ACTB), in which the eGFP signal can track endogenous β-actin expression. Expectedly, after the editing of splice acceptor sites, we observed a dramatical decrease in the percentage of eGFP-positive cells and generation of splicing products with the noncanonical splice site. Furthermore, we manipulated Peroxidasin in mouse embryos with ABE, in which a noncanonical acceptor was activated to remodel splicing, successfully generating a mouse disease model of anophthalmia and severely malformed microphthalmia. Collectively, we demonstrate that ABE-mediated splicing remodeling can activate a noncanonical acceptor to manipulate human and mouse genomes, which will facilitate the investigation of basic and translational medicine studies.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。