Structural assembly of the nucleic-acid-binding Thp3-Csn12-Sem1 complex functioning in mRNA splicing

核酸结合 Thp3-Csn12-Sem1 复合物的结构组装在 mRNA 剪接中发挥作用

阅读:5
作者:Zhiling Kuang, Jiyuan Ke, Jiong Hong, Zhongliang Zhu, Liwen Niu

Abstract

PCI domain proteins play important roles in post-transcriptional gene regulation. In the TREX-2 complex, PCI domain-containing Sac3 and Thp1 proteins and accessory Sem1 protein form a ternary complex required for mRNA nuclear export. In contrast, structurally related Thp3-Csn12-Sem1 complex mediates pre-mRNA splicing. In this study, we determined the structure of yeast Thp3186-470-Csn12-Sem1 ternary complex at 2.9 Å resolution. Both Thp3 and Csn12 structures have a typical PCI structural fold, characterized by a stack of α-helices capped by a C-terminal winged-helix (WH) domain. The overall structure of Thp3186-470-Csn12-Sem1 complex has an inverted V-shape with Thp3 and Csn12 forming the two sides. A fishhook-shaped Sem1 makes extensive contacts on Csn12 to stabilize its conformation. The overall structure of Thp3186-470-Csn12-Sem1 complex resembles the previously reported Sac3-Thp1-Sem1 complex, but also has significant structural differences. The C-terminal WH domains of Thp3 and Csn12 form a continuous surface to bind different forms of nucleic acids with micromolar affinity. Mutation of the basic residues in the WH domains of Thp3 and Csn12 affects nucleic acid binding in vitro and mRNA splicing in vivo. The Thp3-Csn12-Sem1 structure provides a foundation for further exploring the structural elements required for its specific recruitment to spliceosome for pre-mRNA splicing.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。