Significance
Biocompatibility of bare metal stents is a major challenge owing to the significantly high rates of in-stent restenosis. Previously we demonstrated that peptide CD47 functionalization improves the biocompatibility of bare metal stents in rat model. A similar trend was observed in our ex vivo studies where rabbit blood was perfused over the rabbit pepCD47 functionalized surfaces. These results provide valuable proof of concept data for future in vivo rabbit model studies. In addition, we investigated stability of the pepCD47 on metal surface and observed that pepCD47 coating is stable over time and resistant to industrially relevant pragmatic challenges.
Statement of significance
Biocompatibility of bare metal stents is a major challenge owing to the significantly high rates of in-stent restenosis. Previously we demonstrated that peptide CD47 functionalization improves the biocompatibility of bare metal stents in rat model. A similar trend was observed in our ex vivo studies where rabbit blood was perfused over the rabbit pepCD47 functionalized surfaces. These results provide valuable proof of concept data for future in vivo rabbit model studies. In addition, we investigated stability of the pepCD47 on metal surface and observed that pepCD47 coating is stable over time and resistant to industrially relevant pragmatic challenges.
