Identification of a novel "almost neutral" micro-opioid receptor antagonist in CHO cells expressing the cloned human mu-opioid receptor

在表达克隆的人类 μ-阿片受体的 CHO 细胞中鉴定出一种新型“几乎中性”微阿片受体拮抗剂

阅读:5
作者:Elliott J Sally, Heng Xu, Christina M Dersch, Ling-Wei Hsin, Li-Te Chang, Thomas E Prisinzano, Denise S Simpson, Denise Giuvelis, Kenner C Rice, Arthur E Jacobson, Kejun Cheng, Edward J Bilsky, Richard B Rothman

Abstract

The basal (constitutive) activity of G protein-coupled receptors allows for the measurement of inverse agonist activity. Some competitive antagonists turn into inverse agonists under conditions where receptors are constitutively active. In contrast, neutral antagonists have no inverse agonist activity, and they block both agonist and inverse agonist activity. The mu-opioid receptor (MOR) demonstrates detectable constitutive activity only after a state of dependence is produced by chronic treatment with a MOR agonist. We therefore sought to identify novel MOR inverse agonists and novel neutral MOR antagonists in both untreated and agonist-treated MOR cells. CHO cells expressing the cloned human mu receptor (hMOR-CHO cells) were incubated for 20 h with medium (control) or 10 microM (2S,4aR,6aR,7R,9S,10aS,10bR)-9-(benzoyloxy)-2-(3-furanyl)dodecahydro-6a,10b-dimethyl-4,10-dioxo-2H-naphtho-[2,1-c]pyran-7-carboxylic acid methyl ester (herkinorin, HERK). HERK treatment generates a high degree of basal signaling and enhances the ability to detect inverse agonists. [(35)S]-GTP-gamma-S assays were conducted using established methods. We screened 21 MOR "antagonists" using membranes prepared from HERK-treated hMOR-CHO cells. All antagonists, including CTAP and 6beta-naltrexol, were inverse agonists. However, LTC-274 ((-)-3-cyclopropylmethyl-2,3,4,4alpha,5,6,7,7alpha-octahydro-1H-benzofuro[3,2-e]isoquinolin-9-ol)) showed the lowest efficacy as an inverse agonist, and, at concentrations less than 5 nM, had minimal effects on basal [(35)S]-GTP-gamma-S binding. Other efforts in this study identified KC-2-009 ((+)-3-((1R,5S)-2-((Z)-3-phenylallyl)-2-azabicyclo[3.3.1]nonan-5-yl)phenol hydrochloride) as an inverse agonist at untreated MOR cells. In HERK-treated cells, KC-2-009 had the highest efficacy as an inverse agonist. In summary, we identified a novel and selective MOR inverse agonist (KC-2-009) and a novel MOR antagonist (LTC-274) that shows the least inverse agonist activity among 21 MOR antagonists. LTC-274 is a promising lead compound for developing a true MOR neutral antagonist.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。