Tankyrase1-mediated poly(ADP-ribosyl)ation of TRF1 maintains cell survival after telomeric DNA damage

Tankyrase1 介导的 TRF1 聚(ADP-核糖基化)可在端粒 DNA 损伤后维持细胞存活

阅读:6
作者:Lu Yang, Luxi Sun, Yaqun Teng, Hao Chen, Ying Gao, Arthur S Levine, Satoshi Nakajima, Li Lan

Abstract

Oxidative DNA damage triggers telomere erosion and cellular senescence. However, how repair is initiated at telomeres is largely unknown. Here, we found unlike PARP1-mediated Poly-ADP-Ribosylation (PARylation) at genomic damage sites, PARylation at telomeres is mainly dependent on tankyrase1 (TNKS1). TNKS1 is recruited to damaged telomeres via its interaction with TRF1, which subsequently facilitates the PARylation of TRF1 after damage. TNKS inhibition abolishes the recruitment of the repair proteins XRCC1 and polymerase β at damaged telomeres, while the PARP1/2 inhibitor only has such an effect at non-telomeric damage sites. The ANK domain of TNKS1 is essential for the telomeric damage response and TRF1 interaction. Mutation of the tankyrase-binding motif (TBM) on TRF1 (13R/18G to AA) disrupts its interaction with TNKS1 concomitant recruitment of TNKS1 and repair proteins after damage. Either TNKS1 inhibition or TBM mutated TRF1 expression markedly sensitizes cells to telomere oxidative damage as well as XRCC1 inhibition. Together, our data reveal a novel role of TNKS1 in facilitating SSBR at damaged telomeres through PARylation of TRF1, thereby protecting genome stability and cell viability.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。