Antimicrobial effects of airborne acoustic ultrasound and plasma activated water from cold and thermal plasma systems on biofilms

空气声学超声波和冷热等离子体系统产生的等离子体活化水对生物膜的抗菌作用

阅读:5
作者:Clémentine M G Charoux, Apurva D Patange, Laura M Hinds, Jeremy C Simpson, Colm P O'Donnell, Brijesh K Tiwari

Abstract

Bacterial biofilms are difficult to inactivate due to their high antimicrobial resistance. Therefore, new approaches are required for more effective bacterial biofilm inactivation. Airborne acoustic ultrasound improves bactericidal or bacteriostatic activity which is safe and environmentally friendly. While, plasma activated water (PAW) is attracting increasing attention due to its strong antimicrobial properties. This study determined efficacy of combined airborne acoustic ultrasound and plasma activated water from both cold and thermal plasma systems in inactivating Escherichia coli K12 biofilms. The application of airborne acoustic ultrasound (15 min) alone was significantly more effective in reducing E. coli counts in 48 and 72 h biofilms compared to 30 min treatment with PAW. The effect of airborne acoustic ultrasound was more pronounced when used in combination with PAW. Airborne acoustic ultrasound treatment for 15 min of the E. coli biofilm followed by treatment with PAW significantly reduced the bacterial count by 2.2-2.62 Log10 CFU/mL when compared to control biofilm treated with distilled water. This study demonstrates that the synergistic effects of airborne acoustic ultrasound and PAW for enhanced antimicrobial effects. These technologies have the potential to prevent and control biofilm formation in food and bio-medical applications.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。