Recovery of motor function of chronic spinal cord injury by extracellular pyruvate kinase isoform M2 and the underlying mechanism

细胞外丙酮酸激酶M2亚型对慢性脊髓损伤运动功能的恢复及其机制

阅读:5
作者:Takahiro Kikuchi, Chihiro Tohda, Masato Suyama

Abstract

In our previous study, we found that pyruvate kinase isoform M2 (PKM2) was secreted from the skeletal muscle and extended axons in the cultured neuron. Indirect evidence suggested that secreted PKM2 might relate to the recovery of motor function in spinal cord injured (SCI) mice. However, in vivo direct evidence has not been obtained, showing that extracellular PKM2 improved axonal density and motor function in SCI mice. In addition, the signal pathway of extracellular PKM2 underlying the increase in axons remained unknown. Therefore, this study aimed to identify a target molecule of extracellular PKM2 in neurons and investigate the critical involvement of extracellular PKM2 in functional recovery in the chronic phase of SCI. Recombinant PKM2 infusion to the lateral ventricle recovered motor function in the chronic phase of SCI mice. The improvement of motor function was associated with axonal increase, at least of raphespinal tracts connecting to the motor neurons directly or indirectly. Target molecules of extracellular PKM2 in neurons were identified as valosin-containing protein (VCP) by the drug affinity responsive target stability method. ATPase activation of VCP mediated the PKM2-induced axonal increase and recovery of motor function in chronic SCI related to the increase in axonal density. It is a novel finding that axonal increase and motor recovery are mediated by extracellular PKM2-VCP-driven ATPase activity.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。