Extract from Rumex acetosa L. for prophylaxis of periodontitis: inhibition of bacterial in vitro adhesion and of gingipains of Porphyromonas gingivalis by epicatechin-3-O-(4β→8)-epicatechin-3-O-gallate (procyanidin-B2-Di-gallate)

大黄提取物用于预防牙周炎:通过表儿茶素-3-O-(4β→8)-表儿茶素-3-O-没食子酸酯(原花青素-B2-二没食子酸酯)抑制细菌体外粘附和牙龈卟啉单胞菌的牙龈蛋白酶

阅读:2
作者:Jana Schmuch, Sabine Beckert, Simone Brandt, Gesine Löhr, Fabian Hermann, Thomas J Schmidt, Thomas Beikler, Andreas Hensel

Background

The aerial parts of Rumex acetosa L. have been used in traditional European medicine for inflammatory diseases of the mouth epithelial tissue. The following study aimed to investigate the influence of a proanthocyanidin-enriched extract from R. acetosa extract against the adhesion of Porphyromonas gingivalis (P. gingivalis), a pathogen strongly involved in chronic and aggressive periodontitis. A further goal was to define the bioactive lead structures responsible for a potential antiadhesive activity and to characterize the underlying molecular mechanisms of the antiadhesive effects. Methodology: An extract of R. acetosa (RA1) with a defined mixture of flavan-3-ols, oligomeric proanthocyanidins and flavonoids, was used. Its impact on P. gingivalis adhesion to KB cells was studied by flow cytometry, confocal laser scanning microscopy and in situ adhesion assay using murine buccal tissue. RA1 and its compounds 1 to 15 were further investigated for additional effects on gingipain activity, hemagglutination and gene expression by RT-PCR. Principal findings: RA1 (5 to 15 μg/mL) reduced P. gingivalis adhesion in a dose-dependent manner to about 90%. Galloylated proanthocyanidins were confirmed to be responsible for this antiadhesive effect with epicatechin-3-O-gallate-(4β,8)-epicatechin-3'-O-gallate (syn. procyanidin B2-di-gallate) being the lead compound. Ungalloylated flavan-3-ols and oligomeric proanthocyanidins were inactive. RA1 and the galloylated proanthocyanidins strongly interact with the bacterial virulence factor Arg-gingipain, while the corresponding Lys-gingipain was hardly influenced. RA1 inhibited also hemagglutination. In silico docking studies indicated that epicatechin-3-O-gallate-(4β,8)-epicatechin-3'-O-gallate interacts with the active side of Arg-gingipain and hemaglutinin from P. gingivalis; the galloylation of the molecule seems to be responsible for fixation of the ligand to the protein. In

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。