Significance
Gene therapy is a promising strategy to overcome barriers to axonal regeneration in the injured central nervous system. Branched polyethylenimine (bPEI: 25kDa) is one of the most widely studied nonviral vectors, but its clinical application has been limited due to cytotoxicity and low transfection efficiency in the presence of serum proteins. Here, we report cationic amphiphilic copolymers, poly (lactide-co-glycolide)-graft-polyethylenimine (PgP) that are capable of efficiently transfecting reporter genes and siRNA both in the presence of 10% serum in vitro and in the rat spinal cord in vivo. The combination of improved transfection and reduced cytotoxicity in the presence of serum as well as transfection of neural cells in vivo suggests PgP may be a promising nucleic acid carrier for CNS gene delivery.
Statement of significance
Gene therapy is a promising strategy to overcome barriers to axonal regeneration in the injured central nervous system. Branched polyethylenimine (bPEI: 25kDa) is one of the most widely studied nonviral vectors, but its clinical application has been limited due to cytotoxicity and low transfection efficiency in the presence of serum proteins. Here, we report cationic amphiphilic copolymers, poly (lactide-co-glycolide)-graft-polyethylenimine (PgP) that are capable of efficiently transfecting reporter genes and siRNA both in the presence of 10% serum in vitro and in the rat spinal cord in vivo. The combination of improved transfection and reduced cytotoxicity in the presence of serum as well as transfection of neural cells in vivo suggests PgP may be a promising nucleic acid carrier for CNS gene delivery.
