WRKY53 negatively regulates rice cold tolerance at the booting stage by fine-tuning anther gibberellin levels

WRKY53 通过微调花药赤霉素水平,对水稻孕穗期抗寒性进行负向调控

阅读:3
作者:Jiaqi Tang, Xiaojie Tian, Enyang Mei, Mingliang He, Junwen Gao, Jun Yu, Min Xu, Jiali Liu, Lu Song, Xiufeng Li, Zhenyu Wang, Qingjie Guan, Zhigang Zhao, Chunming Wang, Qingyun Bu

Abstract

Cold tolerance at the booting (CTB) stage is a major factor limiting rice (Oryza sativa L.) productivity and geographical distribution. A few cold-tolerance genes have been identified, but they either need to be overexpressed to result in CTB or cause yield penalties, limiting their utility for breeding. Here, we characterize the function of the cold-induced transcription factor WRKY53 in rice. The wrky53 mutant displays increased CTB, as determined by higher seed setting. Low temperature is associated with lower gibberellin (GA) contents in anthers in the wild type but not in the wrky53 mutant, which accumulates slightly more GA in its anthers. WRKY53 directly binds to the promoters of GA biosynthesis genes and transcriptionally represses them in anthers. In addition, we uncover a possible mechanism by which GA regulates male fertility: SLENDER RICE1 (SLR1) interacts with and sequesters two critical transcription factors for tapetum development, UNDEVELOPED TAPETUM1 (UDT1), and TAPETUM DEGENERATION RETARDATION (TDR), and GA alleviates the sequestration by SLR1, thus allowing UDT1 and TDR to activate transcription. Finally, knocking out WRKY53 in diverse varieties increases cold tolerance without a yield penalty, leading to a higher yield in rice subjected to cold stress. Together, these findings provide a target for improving CTB in rice.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。