Time-restricted eating alters the 24-hour profile of adipose tissue transcriptome in men with obesity

限时饮食改变了肥胖男性脂肪组织转录组的 24 小时概况

阅读:11
作者:Lijun Zhao, Amy T Hutchison, Bo Liu, Gary A Wittert, Campbell H Thompson, Leanne Nguyen, John Au, Andrew Vincent, Emily N C Manoogian, Hiep D Le, April E Williams, Siobhan Banks, Satchidananda Panda, Leonie K Heilbronn

Conclusions

TRE restored 24-hour profiles in hormones, metabolites, and genes controlling transcriptional regulation in SAT, which could underpin its metabolic health benefit.

Methods

Men (n = 15, age = 63 [4] years, BMI 30.5 [2.4] kg/m2 ) were recruited. A 35-hour metabolic ward stay was conducted at baseline and after 8 weeks of 10-hour TRE. Assessment included 24-hour profiles of plasma glucose, nonesterified fatty acid (NEFA), triglyceride, glucoregulatory hormones, and the SAT transcriptome. Dim light melatonin onset and cortisol area under the curve were calculated.

Objective

Time-restricted eating (TRE) restores circadian rhythms in mice, but the evidence to support this in humans is limited. The objective of this study was to investigate the effects of TRE on 24-hour profiles of plasma metabolites, glucoregulatory hormones, and the subcutaneous adipose tissue (SAT) transcriptome in humans.

Results

TRE did not alter dim light melatonin onset but reduced morning cortisol area under the curve. TRE altered 24-hour profiles of insulin, NEFA, triglyceride, and glucose-dependent insulinotropic peptide and increased transcripts of circadian locomotor output cycles protein kaput (CLOCK) and nuclear receptor subfamily 1 group D member 2 (NR1D2) and decreased period circadian regulator 1 (PER1) and nuclear receptor subfamily 1 group D member 1 (NR1D1) at 12:00 am. The rhythmicity of 450 genes was altered by TRE, which enriched in transcripts for transcription corepressor activity, DNA-binding transcription factor binding, regulation of chromatin organization, and small GTPase binding pathways. Weighted gene coexpression network analysis revealed eigengenes that were correlated with BMI, insulin, and NEFA. Conclusions: TRE restored 24-hour profiles in hormones, metabolites, and genes controlling transcriptional regulation in SAT, which could underpin its metabolic health benefit.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。