Molten Salt Corrosion Behavior of Dual-Phase High Entropy Alloy for Concentrating Solar Power Systems

用于聚光太阳能发电系统的双相高熵合金熔盐腐蚀行为

阅读:8
作者:Kunjal Patel, Vahid Hasannaeimi, Maryam Sadeghilaridjani, Saideep Muskeri, Chaitanya Mahajan, Sundeep Mukherjee

Abstract

Dual-phase high entropy alloys have recently attracted widespread attention as advanced structural materials due to their unique microstructure, excellent mechanical properties, and corrosion resistance. However, their molten salt corrosion behavior has not been reported, which is critical in evaluating their application merit in the areas of concentrating solar power and nuclear energy. Here, the molten salt corrosion behavior of AlCoCrFeNi2.1 eutectic high-entropy alloy (EHEA) was evaluated in molten NaCl-KCl-MgCl2 salt at 450 °C and 650 °C in comparison to conventional duplex stainless steel 2205 (DS2205). The EHEA showed a significantly lower corrosion rate of ~1 mm/year at 450 °C compared to ~8 mm/year for DS2205. Similarly, EHEA showed a lower corrosion rate of ~9 mm/year at 650 °C compared to ~20 mm/year for DS2205. There was selective dissolution of the body-centered cubic phase in both the alloys, B2 in AlCoCrFeNi2.1 and α-Ferrite in DS2205. This was attributed to micro-galvanic coupling between the two phases in each alloy that was measured in terms of Volta potential difference using a scanning kelvin probe. Additionally, the work function increased with increasing temperature for AlCoCrFeNi2.1, indicating that the FCC-L12 phase acted as a barrier against further oxidation and protected the underlying BCC-B2 phase with enrichment of noble elements in the protective surface layer.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。