Developmental beta-cell death orchestrates the islet's inflammatory milieu by regulating immune system crosstalk

发育性β细胞死亡通过调节免疫系统串扰来调控胰岛的炎症环境

阅读:6
作者:Mohammad Nadeem Akhtar, Alisa Hnatiuk, Luis Delgadillo-Silva, Shirin Geravandi, Katrin Sameith, Susanne Reinhardt, Katja Bernhardt, Sumeet Pal Singh, Kathrin Maedler, Lutz Brusch, Nikolay Ninov0

Abstract

While pancreatic beta-cell proliferation has been extensively studied, the role of cell death during islet development remains incompletely understood. Using a genetic model of caspase inhibition in beta cells coupled with mathematical modeling, we here discover an onset of beta-cell death in juvenile zebrafish, which regulates beta-cell mass. Histologically, this beta-cell death is underestimated due to phagocytosis by resident macrophages. To investigate beta-cell apoptosis at the molecular level, we implement a conditional model of beta-cell death linked to Ca2+ overload. Transcriptomic analysis reveals that metabolically-stressed beta cells follow paths to either de-differentiation or apoptosis. Beta cells destined to die activate inflammatory and immuno-regulatory pathways, suggesting that cell death regulates the crosstalk with immune cells. Consistently, inhibiting beta-cell death during development reduces pro-inflammatory resident macrophages and expands T-regulatory cells, the deficiency of which causes premature activation of NF-kB signaling in beta cells. Thus, developmental cell death not only shapes beta-cell mass but it also influences the islet's inflammatory milieu by shifting the immune-cell population towards pro-inflammatory.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。