Decoding hematopoietic specificity in the helix-loop-helix domain of the transcription factor SCL/Tal-1

解码转录因子 SCL/Tal-1 的螺旋-环-螺旋结构域中的造血特异性

阅读:5
作者:Thorsten M Schlaeger, Anna Schuh, Simon Flitter, Andreas Fisher, Hanna Mikkola, Stuart H Orkin, Paresh Vyas, Catherine Porcher

Abstract

The helix-loop-helix (HLH) domain is employed by many transcription factors that control cell fate choice in multiple developmental settings. Previously, we demonstrated that the HLH domain of the class II basic HLH (bHLH) protein SCL/Tal-1 is critical for hematopoietic specification. We have now identified residues in this domain that are essential for restoring hematopoietic development to SCL-/- embryonic stem cells and sufficient to convert a muscle-specific HLH domain to one able to rescue hematopoiesis. Most of these critical residues are distributed in the loop of SCL, with one in helix 2. This is in contrast to the case for MyoD, the prototype of class II bHLH proteins, where the loop seems to serve mainly as a linker between the two helices. Among the identified residues, some promote heterodimerization with the bHLH partners of SCL (E12/E47), while others, unimportant for this property, are still crucial for the biological function of SCL. Importantly, the residue in helix 2 specifically promotes interaction with a known partner of SCL, the LIM-only protein LMO2, a finding that strengthens genetic evidence that these proteins interact. Our data highlight the functional complexity of bHLH proteins, provide mechanistic insight into SCL function, and strongly support the existence of an active SCL/LMO2-containing multiprotein complex in early hematopoietic cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。