Optimizing lentiviral vector transduction of hematopoietic stem cells for gene therapy

优化慢病毒载体转导造血干细胞用于基因治疗

阅读:6
作者:Yoonjeong Jang, Yoon-Sang Kim, Matthew M Wielgosz, Francesca Ferrara, Zhijun Ma, Jose Condori, Lance E Palmer, Xiwen Zhao, Guolian Kang, David J Rawlings, Sheng Zhou, Byoung Y Ryu

Abstract

Autologous gene therapy using lentiviral vectors (LVs) holds promise for treating monogenetic blood diseases. However, clinical applications can be limited by suboptimal hematopoietic stem cell (HSC) transduction and insufficient quantities of available vector. We recently reported gene therapy for X-linked severe combined immunodeficiency using a protocol in which patient CD34+ cells were incubated with two successive transductions. Here we describe an improved protocol for LV delivery to CD34+ cells that simplifies product manipulation, reduces vector consumption, and achieves greater vector copy number (VCN) of repopulating HSCs in mouse xenotransplantation assays. Notable findings include the following: (1) the VCN of CD34+ cells measured shortly after transduction did not always correlate with the VCN of repopulating HSCs after xenotransplantation; (2) single-step transduction at higher CD34+ cell concentrations (2-4 × 106/ml) conserved LV without compromising HSC VCN; (3) poloxamer F108 (LentiBOOST) increased HSC VCN by two- to threefold (average from three donors); (4) although LentiBOOST + prostaglandin E2 combination further increased VCN in vitro, the VCN observed in vivo were similar to LentiBOOST alone; (5) cyclosporine H increased the HSC VCN to a similar or greater extent with LentiBOOST in vivo. Our findings delineate an improved protocol to increase the VCN of HSCs after CD34+ cell transduction with clinically relevant LVs.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。