Characterization of the phenotypic and genotypic tolerance to abiotic stresses of natural populations of Heterorhabditis bacteriophora

异小杆线虫自然种群对非生物胁迫的表型和基因型耐受性的表征

阅读:6
作者:Noa Levy, Adi Faigenboim, Liora Salame, Carlos Molina, Ralf-Udo Ehlers, Itamar Glazer, Dana Ment

Abstract

Entomopathogenic nematodes are effective biocontrol agents against arthropod pests. However, their efficacy is limited due to sensitivity to environmental extremes. The objective of the present study was to establish a foundation of genetic-based selection tools for beneficial traits of heat and desiccation tolerance in entomopathogenic nematodes. Screening of natural populations enabled us to create a diverse genetic and phenotypic pool. Gene expression patterns and genomic variation were studied in natural isolates. Heterorhabditis isolates were phenotyped by heat- and desiccation-stress bioassays to determine their survival rates compared to a commercial line. Transcriptomic study was carried out for the commercial line, a high heat-tolerant strain, and for the natural, low heat-tolerant isolate. The results revealed a higher number of upregulated vs. downregulated transcripts in both isolates vs. their respective controls. Functional annotation of the differentially expressed transcripts revealed several known stress-related genes and pathways uniquely expressed. Genome sequencing of isolates with varied degrees of stress tolerance indicated variation among the isolates regardless of their phenotypic characterization. The obtained data lays the groundwork for future studies aimed at identifying genes and molecular markers as genetic selection tools for enhancement of entomopathogenic nematodes ability to withstand environmental stress conditions.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。