Mechanism of [4Fe-4S](Cys)4 cluster nitrosylation is conserved among NO-responsive regulators

[4Fe-4S](Cys)4 簇亚硝化机制在 NO 响应调节剂中是保守的

阅读:6
作者:Jason C Crack, Melanie R Stapleton, Jeffrey Green, Andrew J Thomson, Nick E Le Brun

Abstract

The Fumarate nitrate reduction (FNR) regulator from Escherichia coli controls expression of >300 genes in response to O2 through reaction with its [4Fe-4S] cluster cofactor. FNR is the master switch for the transition between anaerobic and aerobic respiration. In response to physiological concentrations of nitric oxide (NO), FNR also regulates genes, including the nitrate reductase (nar) operon, a major source of endogenous cellular NO, and hmp, which encodes an NO-detoxifying enzyme. Here we show that the [4Fe-4S] cluster of FNR reacts rapidly in a multiphasic reaction with eight NO molecules. Oxidation of cluster sulfide ions (S(2-)) to sulfane (S(0)) occurs, some of which remains associated with the protein as Cys persulfide. The nitrosylation products are similar to a pair of dinuclear dinitrosyl iron complexes, [Fe(I)2(NO)4(Cys)2](0), known as Roussin's red ester. A similar reactivity with NO was reported for the Wbl family of [4Fe-4S]-containing proteins found only in actinomycetes, such as Streptomyces and Mycobacteria. These results show that NO reacts via a common mechanism with [4Fe-4S] clusters in phylogenetically unrelated regulatory proteins that, although coordinated by four Cys residues, have different cluster environments. The reactivity of E. coli FNR toward NO, in addition to its sensitivity toward O2, is part of a hierarchal network that monitors, and responds to, NO, both endogenously generated and exogenously derived.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。