Quasi-Shell-Growth Strategy Achieves Stable and Efficient Green InP Quantum Dot Light-Emitting Diodes

准壳生长策略实现稳定高效的绿色 InP 量子点发光二极管

阅读:5
作者:Qianqian Wu, Fan Cao, Sheng Wang, Yimin Wang, Zhongjiang Sun, Jingwen Feng, Yang Liu, Lin Wang, Qiang Cao, Yunguo Li, Bin Wei, Wai-Yeung Wong, Xuyong Yang

Abstract

Indium phosphide (InP) based quantum dots (QDs) have been known as an ideal alternative to heavy metals including QDs light emitters, such as cadmium selenium (CdSe) QDs, and show great promise in the next-generation solid-state lighting and displays. However, the electroluminescence performance of green InP QDs is still inferior to their red counterparts, due to the higher density of surface defects and the wider particle size distribution. Here, a quasi-shell-growth strategy for the growth of highly luminescent green InP/ZnSe/ZnS QDs is reported, in which the zinc and selenium monomers are added at the initial nucleation of InP stage to adsorb on the surface of InP cores that create a quasi-ZnSe shell rather than a bulk ZnSe shell. The quasi-ZnSe shell reduces the surface defects of InP core by passivating In-terminated vacancies, and suppresses the Ostwald ripening of InP core at high temperatures, leading to a photoluminescence quantum yield of 91% with a narrow emission linewidth of 36 nm for the synthesized InP/ZnSe/ZnS QDs. Consequently, the light-emitting diodes based on the green QDs realize a maximum luminance of 15606 cd m-2 , a peak external quantum efficiency of 10.6%, and a long half lifetime of > 5000 h.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。